136 research outputs found

    An analysis method for flavan-3-ols using high performance liquid chromatography coupled with a fluorescence detector

    Get PDF
    Procyanidins belong to a family of flavan-3-ols, which consist of monomers, (+)-catechin and (-)-epicatechin, and their oligomers and polymers, and are distributed in many plant-derived foods. Procyanidins are reported to have many beneficial physiological activities, such as antihypertensive and anticancer effects. However, the bioavailability of procyanidins is not well understood owing to a lack of convenient and high-sensitive analysis methods. The aim of this study was to develop an improved method for determining procyanidin content in both food materials and biological samples. High performance liquid chromatography (HPLC) coupled with a fluorescence detector was used in this study. The limits of detection (LODs) of (+)-catechin, (-)-epicatechin, procyanidin B2, procyanidin C1, and cinnamtannin A2 were 3.0 x 10(-3) ng, 4.0 x 10(-3) ng, 14.0 x 10(-3) ng, 18.5 x 10(-3) ng, and 23.0 x 10(-3) ng, respectively; the limits of quantification (LOQs) were 10.0 x 10(-3) ng, 29.0 x 10(-3) ng, 28.5 x 10(-3) ng, 54.1 x 10(-3) ng, and 115.0 x 10(-3) ng, respectively. The LOD and LOQ values indicated that the sensitivity of the fluorescence detector method was around 1000 times higher than that of conventional HPLC coupled with a UV-detector. We applied the developed method to measure procyanidins in black soybean seed coat extract (BE) prepared from soybeans grown under three different fertilization conditions, namely, conventional farming, basal manure application, and intertillage. The amount of flavan-3-ols in these BEs decreased in the order intertillage > basal manure application > conventional farming. Commercially available BE was orally administered to mice at a dose of 250 mg/kg body weight, and we measured the blood flavan-3-ol content. Data from plasma analysis indicated that up to the tetramer oligomerization, procyanidins were detectable and flavan-3-ols mainly existed in conjugated forms in the plasma. In conclusion, we developed a highly sensitive and convenient analytical method for the analysis of flavan-3-ols, and applied this technique to investigate the bioavailability of flavan-3-ols in biological samples and to measure flavan-3-ol content in food material and plants

    Methylxanthine Derivative-Rich Cacao Extract Suppresses Differentiation of Adipocytes through Downregulation of PPARĪ³ and C/EBPs

    Get PDF
    Abstract Cacao extract (CE) consumption has beneficial effects on human health, such as lowering the risk of obesity. However, the underlying molecular mechanism for the anti-obesity effect of CE remains incompletely understood. Here, we used a 50% aqueous alcohol extract of cacao mass, which is rich in methylxanthine derivatives (about 11%) and poor in flavan-3-ols (less than 1%), and assessed the suppression effects of this extract on adipocyte differentiation to investigate the anti-obesity mechanism. CE dose-dependently decreased fat accumulation in 3T3-L1 cells without affecting cell viability. CE also dose-dependently decreased the protein and gene expression levels of two adipogenesis-related transcription factors, peroxisome proliferator-activated receptor gamma (PPARĪ³) and CCAAT/enhancer-binding proteins (C/EBPs). Moreover, CE decreased protein expression levels of sterol regulatory element-binding protein 1 (SREBP1) and its downstream fatty acid synthase (FAS), which was accompanied by the retained localization of SREBP1 in the cytoplasm of 3T3-L1 cells. After ICR mice were fed a diet containing 1% CE for 1 wk, their white adipose tissue weight was lower, whereas their brown adipose tissue weight was higher compared with those of control animals. Additionally, the protein expression levels of PPARĪ³, C/EBPs, SREBP1, and FAS in the white adipose tissue of these mice were also lower than those in control animals. In contrast, diet supplementation with CE induced higher levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream acetyl-CoA carboxylase. In conclusion, methylxanthine derivative-rich CE decreases fat accumulation in adipocytes by downregulating the expression of the adipocyte differentiation master regulators through the activation of AMPK.ArticleJournal of Nutritional Science and Vitaminology. 64(2): 151-160. (2018)journal articl

    Caffeine-Stimulated Intestinal Epithelial Cells Suppress Lipid Accumulation in Adipocytes

    Get PDF
    Caffeine is a methylxanthine derived from plant foods such as coffee beans and tea leaves, and has multiple biological activities against physiological response and several diseases. Although there are some reports about the direct effect of caffeine against anti-lipid accumulation in vitro, the effect of caffeine on lipid accumulation in adipocytes through stimulating intestinal epithelial cells is unknown. Since direct treatment with caffeine to 3T3-L1 cells did not affect lipid accumulation, we determined whether caffeine-stimulated intestinal epithelial Caco-2 cells influence the lipid accumulation in 3T3-L1 adipocytes. Caco-2 cells were cultured on a transwell insert with or without caffeine for 24 h. Subsequently, the basolateral component of the Caco-2 cell culture on the transwell was collected and termed caffeine-conditioning medium (CCM). When 3T3-L1 adipocytes were incubated with CCM, CCM decreased lipid accumulation and suppressed gene expression of proliferator activated receptor (PPAR) Ī³ and CCAAT/enhancer binding protein (C/EBP) Ī± in 3T3-L1 adipocytes. Furthermore, CCM decreased the expression of C/EBPĪ² and C/EBPĪ“ at the protein level, but not at the mRNA level. We observed that a proteasome inhibitor, MG132, inhibited CCM-caused down-expression of C/EBPĪ² and C/EBPĪ“ proteins, and that CCM promoted the ubiquitination level of C/EBPĪ² and C/EBPĪ“ proteins. Protein microarray analysis showed caffeine suppresses the secretion of inflammatory cytokines, interleukin-8 and plasminogen activator inhibitor-1 from Caco-2 cells. These results suggest that caffeine indirectly suppresses lipid accumulation in 3T3-L1 adipocytes through decreasing secretion of inflammatory cytokines from Caco-2 cells.ArticleJournal of Nutritional Science and Vitaminology. 63(5): 331-338. (2017)journal articl

    Glowing gold nanoparticle coating: restoring the lost property from bulk gold

    Get PDF
    ArticleNanoscale. 11(9): 3786-3793. (2019)journal articl

    Cerebral Glycogen Distribution and Aging

    Get PDF
    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded wellā€defined glycogen immunoreactive signals compared with the conventional periodic acidā€Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3ā€CA1 and striatum had a ā€˜patchyā€™ appearance with glycogenā€rich and glycogenā€poor astrocytes appearing in alternation. The glycogen patches were more evident with largeā€molecule glycogen in young adult mice but they were hardly observable in aged mice (1ā€“2 years old). Our results reveal brain regionā€dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes

    3-O-Acyl-epicatechins Increase Glucose Uptake Activity and GLUT4 Translocation through Activation of PI3K Signaling in Skeletal Muscle Cells

    Get PDF
    Tea catechins promote glucose uptake in skeletal muscle cells. In this study, we investigated whether the addition of an acyl group to the C-3 position of catechins to generate 3-O-acyl-catechins promoted glucose uptake in L6 myotubes. 3-O-Myristoyl-(-)-epicatechin (EC-C14) and 3-O-palmitoyl-(-)-epicatechin (EC-C16) promoted glucose uptake and translocation of glucose transporter (GLUT) 4 in the cells. The effect of 3-O-acyl-(-)-epicatechins was stronger than that of (-)-epicatechin (EC), whereas neither 3-O-myristoyl-(+)-catechin (C-C14) nor 3-O-palmitoyl-(+)catechin (C-C16) promoted glucose uptake or GLUT4 translocation as well as (+)-catechin (C). We further investigated an affinity of catechins and 3-O-acyl-catechins to the lipid bilayer membrane by using surface plasma resonance analysis. Maximum binding amounts of EC-C16 and C-C16 to the lipid bilayer clearly increased compared with that of (-)-EC and (+)-C, respectively. We also examined the mechanism of GLUT4 translocation and found EC-C14 and EC-C16 induced the phosphorylation of PI3K, but did not affect phosphorylation of Akt or IR. In conclusion, the addition of an acyl group to the C-3 position of (-)-EC increases its affinity for the lipid bilayer membrane and promotes GLUT4 translocation through PI3K-dependent pathways in L6 myotubes

    Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARĪ³ activation-dependent manner

    Get PDF
    The adipocytes play an important role in driving the obese-stateā€”white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)ā€”the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARĪ³ ligand-dependent manner. It also increased the phosphorylation levels of PPARĪ³ coactivator 1Ī± without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARĪ³-induced UCP1 expression in vitro, suggesting its potential to treat obesity.ArticleThe Journal of Nutritional Biochemistry. 100: 108898 (2021)journal articl

    Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance.</p> <p>Methods</p> <p>In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG) uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 Ī¼M palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined.</p> <p>Results</p> <p>In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 Ī¼M arachidonic acid showed similar effects to 750 Ī¼M oleic acid.</p> <p>Conclusions</p> <p>We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.</p

    Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein beta degradation by adenosine receptor A1

    Get PDF
    Theobromine, a methylxanthine derived from cacao beans, reportedly has various health-promoting properties but molecular mechanism by which effects of theobromine on adipocyte differentiation and adipogenesis remains unclear. In this study, we aimed to clarify the molecular mechanisms of the anti-adipogenic effect of theobromine in vitro and in vivo. ICR mice (4 week-old) were administered with theobromine (0.1 g/kg) for 7 days. Theobromine administration attenuated gains in body and epididymal adipose tissue weights in mice and suppressed expression of adipogenic-associated genes in mouse adipose tissue. In 3T3-L1 preadipocytes, theobromine caused degradation of C/EBP beta protein by the ubiquitin-proteasome pathway. Pull down assay showed that theobromine selectively interacts with adenosine receptor A1(AR1), and AR1 knockdown inhibited theobromine-induced C/ESPfi degradation. Theobromine increased sumoylation of C/EBP beta' at Lys133. Expression of the small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2) gene, coding for a desumoylation enzyme, was suppressed by theobromine. In vivo knockdown studies showed that AR1 knockdown in mice attenuated the anti-adipogenic effects of theobromine in younger mice. Theobromine suppresses adipocyte differentiation and induced C/EBPP degradation by increasing its sumoylation. Furthermore, the inhibition of AR1 signaling is important for theobromine-induced C/EBP beta degradation.ArticleBIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH.1864(12):2438-2448(2017)journal articl
    • ā€¦
    corecore